
MASS TRANSFER IN A CYLINDRICAL CHANNEL 

WITH EVAPORATION AND CONDENSATION AT THE 

L. N. Shulepov 

WALLS 

UDC 536.422 

A model kinetic equation is used to investigate the t r a n s f e r  of mate r ia l  evaporated f rom the 
walls of a channel which has a t empe ra tu r e  gradient  along its axis.  

Relatively few papers  have used a kinetic equation to study mass  t r a n s f e r  in channels with evaporat ion 
and condensation.  Mass t r a n s f e r  in a cyl indr ical  channel of finite length is t rea ted  in [1, 2] for  a broad range 
of Knudsen numbers .  The t empera tu re  of the channel walls is assumed constant,  and the condensation co-  
efficient is taken as unity. Evaporat ion occurs  only f rom the bottom of the channel in [1], but f rom both the 
bottom and sides in [2]. 

We investigate the t r a n s f e r  of wall mate r ia l  in a long cyl indrical  channel of radius R which has a t em-  
pe ra tu re  gradient  along the channel axis z. We descr ibe  the state  of the vapor by the Boltzmann equation with a 
B h a t n a g a r - G r o s s - K r o o k  model of the col l is ion integral .  The boundary conditions a r e  formulated under  the 
assumption that both the ref lected molecules  and those evaporated f rom the walls have a Maxwellian d is t r ibu-  
tion of veloci t ies  cha rac t e r i zed  by the wall t empera tu re .  The condensation coefficient  fl is assumed t e m p e r a -  
tu re  independent, i .e. ,  constant along the channel length. Under these  assumptions the boundary condition for  
the distr ibution function can be wri t ten  in the form 

1--[g (2~tn 1/2 ( _  my2) 
f R ( n v > 0 ) = [  9 +  ~ • kT ) qn] (2~kT)  3/zexp, 2kT ] '  (1) 

where T=T(z )  is the given t empe ra tu r e  distr ibution of the channel walls in ~ p =p(z) is the saturated vapor  
density at the t e mpe ra tu r e  T(z), and qR(z) is the radial  component of the mass  flux density at the channel wall. 

For  small  t empera tu re  gradients  the distr ibution function of the vapor in a given c ros s  sect ion of the 
channel is negligibly different  f rom that of par t i c les  moving f rom the channel wall (1), and the re fo re  we seek 
it in the fo rm 

f----fail + h ( r ,  z, v)]; (2) 

h<< ] and at the channel wall sat isf ies  the boundary condition 

h R (nv > 0) = 0. (3) 

The l inear ized Boltzmann equation for  the problem under  considerat ion can be wri t ten  in the fo rm 

c •  - - - - +  c 2 -  
p dz T dz + 

M -  - -  ~ - -  ~ - -  

' [~ kT ] P dz + W 

( 3)Ov Tv--T ( m )'/~c_qq + 
q- cZ---2 -- 9 T + 2  ~ P 

q_ _ ~  ( . _ ~ _ ] - -  2~m ,~l/~ q~p h, (4) 

where h= (~/p) (2m/kT) t/2 is the mean f ree  path; # is the v iscos i ty  of the vapor; r is the two-dimensional  
r ad ius -vec to r  in a plane perpendicu lar  to the z axis in units of X; and c is the dimensionless  molecu la r  velocity.  

The t e r m  0h/0z is ord inar i ly  omitted in solving problems of the flow of a gas in a cyl indr ical  channel 
[1, 4, 5]. In the presen t  case  this approximation implies that the essent ia l  dependence of the distr ibuted func- 
tion on z is expressed  in t e rms  of p, T, and qR- Integrating Eq. (4) along the cha rac t e r i s t i c s ,  we obtain 
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. ( 3 ) ,  
h =  c---l--exp - -  - -  ~kc z - - - - - -  + c z -  - -  

p dz T dz ' 
0 

q - - ~ [ 2 z c m ~ l / 2 L " d q R  ) -q- (  ~---Y-v--1) kT ] p dz 

- k ( c 2 - - 3 )  pro - - - - f - - - - + 2  - ~ ] T v - - T  [ m ~I/2 cq _ k _ ~ .  ( 2~m \ - - - -~  j (5) 

Multiplying (5) by (1/r  3/2) p ( 2 k T / m )  1/2 e z e x p ( - e  2) and integrat ing with r e spec t  to e, we obtain an inte-  
gra l  equation for  the mass  flux density along the z axis:  

l ~ T o ( I r - - r ~ l )  q z ( r ~ ) d r i = ~ , ( _ ~ ) l / ~ [  ( do ~_ 
q~---~- ]r--r  il ~-~ , - -  dz ' 

\ kT ~ ]r--r~] 

where T~(x)= t"exp - - t  ----~- dt (see [61). 

0 

p dT ~ T 2 ( I r - - r ~ [ )  dri] ' (6) 
T dz J 3 1  r--  rtt 

Equation (6) is solved by the Bubnov-Galerkin method, using for  qz the approximation 

qz = A (z) r ~ + B (z). 

It is shown in [5] that when this approximat ion is used in the integral equation which descr ibes  Poiseui l le  
flow and differs  f rom (6) only on the right-hand side, the resul t  is in good agreement  with the numerical  solu-  
tion of this equation given in [4]. The two solutions do not differ  by m o r e  than 1% for  Knudsen number  f rom 
0.1 to % Per fo rming  the calculation, we obtain the following express ion  for  the mass  flux along the channel 
axis: 

where  P is the p r e s s u r e  of the saturated vapor  at t empera tu re  T(z). The coefficient  Q1 and Q2 correspond to 
those in [7]. In the descr ip t ion  of nonisothermal  Poiseui l le  flow in [7], Q1 rep resen t s  the dimensionless  flux 
resul t ing f rom the p r e s s u r e  gradient  and Q2 the flux resul t ing f rom the t empera tu re  gradient .  

For  B = 1, Eq. (7) takes the form 

Gi = - -  ~R3 2kT ] Qi dz T dz " (8) 

Equation (8) de te rmines  mass  t r a n s f e r  over  the whole range of Knudsen numbers  and has the same fo rm as 
the express ion  descr ibing nonisothermal  Poiseui l le  flow in a cyl indr ical  channel. We note, however, that in 
this case  Eq. (8) contains the saturated vapor  p r e s s u r e  gradient  determined by the given t empera tu re  d is t r ibu-  
tion of the channel walls.  

In the limiting case  of large  Knudsen numbers  (8) becomes 

8 / ' - ~ -  d P 
G,=-y~3V~ dz VT" •) 

At the other extreme, when Kn<< I we have 

dP (10) G i ---- ~ R  4 p -  
8~t dz 

For  f l r  Eq. (7) involves the flux at the channel wall. Since this flux is re la ted to the axial flux by the 
equation of continuity 

1 dG 
qa = -  2uR d---Z ' (11) 

we obtain a s econd-o rde r  different ial  equation for  G: 
a2G 

- -  - -  a2G = --  ~zGl, (12) 
d z  z 
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where  ~2 = ( 2 / ~ ) -  [fl/(1-fl)]. (l/Q1) �9 (1/R2). The quanti t ies Q1 and a a r e  functions of the Knudsen number ;  i .e . ,  
they genera l ly  depend on z. For  l a rge  and in te rmedia te  Knudsen numbers ,  however ,  this  dependence is ve ry  
weak [8]. For  Kn<< 1, Q1 =l/4Kn-~. Even in this case ,  however,  the dependence of Q1 on z can be neglected 
for  smal l  t e m p e r a t u r e  and p r e s s u r e  drops  along the channel, and the solution of Eq. (12) can be wr i t ten  in 
the fo rm 

6 = C, exp (az) -4- Qexp (-- az) -4- 

Determining C1 and C 2 f rom the condition that the flux mus t  be bounded as  z - - •  we obtain 

f ~ 1 6 =  2--~ exp ( - -  ez) ,. 6, (~) exp (~)_ ~ § ~-  exp (ez) 6, (~.) exp (--  a~) ~ .  (14) 

Thus,  the m a s s  flux for  an a r b i t r a r y  value of the condensat ion coeff icient  can  be expressed  in t e r m s  of 
the m a s s  flux fo r  B= 1. 

Integrat ing by pa r t s  success ive ly ,  we can wri te  (14) in the fo rm 

"•d 1 d2i6, 
6--= ~ : "  dz2i (15) 

i=0 

The f i r s t  t e r m  of s e r i e s  (15) r e p r e s e n t s  the m a s s  flux fo r  fl = 1 and does not depend on the condensat ion co-  
efficient.  Suppose L>>R is a cha r ac t e r i s t i c  length ove r  which the re  is an apprec iab le  change in the t e m p e r a -  
tu re  and its de r iva t ives .  Then when the condition 

(R/L) 2 Q, << ~/(I -- ~) (16) 

is sa t i s f ied  the remain ing  t e r m s  of the s e r i e s  do not contr ibute  apprec iab ly  to the flux; i .e . ,  m a s s  t r a n s f e r  i s  
independent of the condensat ion coeff icient .  For  l a rge  and in te rmedia te  Knudsen numbers  Q1 is c lose  to unity 
and condition (16) can be sat isf ied over  a broad range of /~values .  Fo r  Kn<< 1, Eq. (16) is cons iderab ly  m o r e  
s t r ingent :  

(_~)2<< 4Kn l--~ 

It is known that the processes of evaporation and condensation can be considered as a special case of a 
reversible heterogeneous first-order reaction. Condition (16) implies that the reaction proceeds in the diffu- 
sion regime when the effective reaction rate is determined by the yield and removal of the reacting materials 
and not by the reaction rate at the wall. This also explains why mass transfer is independent of the condensa- 
tion coefficient when (16) is satisfied. 

N O T A T I O  N 

f,  d is t r ibut ion function; v, m o l e c u l a r  velocity;  v•  component  of mo lecu l a r  veloci ty in a plane pe rpend icu-  
l a r  to the channel axis ;  n, unit vec to r  normal  to the channel sur face ;  r  angle between n and v •  m,  m o l e c u l a r  
weight; k, Bol tzmann constant;  Pv, vapor  densi ty in channel; T v, vapor  t e m p e r a t u r e  in channel in ~ k, mean  
f ree  path of vapor  molecules ;  5, radius of channel in units of k; b = - r  cos r +~ /62- r  2 s in 29, cha r ac t e r i s t i c  
length f rom point r to channel wall; Kn, Knudsen number .  Indices:  R, value of quantity at  channel wall.  
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