MASS TRANSFER IN A CYLINDRICAL CHANNEL
WITH EVAPORATION AND CONDENSATION AT THE WALLS

L. N. Shulepov UDC 536,422

A model kinetic equation is used to investigate the transfer of material evaporated from the
walls of a channel which has a temperature gradient along its axis,

Relatively few papers have used a kinetic equation to study mass transfer in channels with evaporation
and condensation. Mass transfer in a cylindrical channel of finite length is treated in [1, 2] for a broad range
of Knudsen numbers. The temperature of the channel walls is assumed constant, and the condensation co-
efficient is taken as unity, Evaporation occurs only from the bottom of the channel in {1], but from both the
bottom and sides in [2].

We investigate the transfer of wall material in a long cylindrical channel of radius R which has a tem~
perature gradient along the channel axis z. We describe the state of the vapor by the Boltzmann equation with a
Bhatnagar—Gross~Krook model of the collision integral. The boundary conditions are formulated under the
assumption that both the reflected molecules and those evaporated from the walls have a Maxwellian distribu~
tion of velocities characterized by the wall temperature. The condensation coefficient 8 is assumed tempera-
ture independent, i.e., constant along the channel length, Under these assumptions the boundary condition for
the distribution function can be written in the form
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where T="T{z) is the given temperature distribution of the channel walls in °K, p=p(z) is the saturated vapor
density at the temperature T(z), and qg () is the radial component of the mass flux density at the channel wall,

For small temperature gradients the distribution function of the vapor in a given cross section of the
channel is negligibly different from that of particles moving from the channel wall (1), and therefore we seek
it in the form

f=Ffgll+R(r 2 V) @)
h<« 1 and at the channel wall satisfies the boundary condition
he (nv>0) = 0. 3

The linearized Boltzmann equation for the problem under consideration can be written in the form
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where A= (u/p) (2m/kT)1/ 2 {5 the mean free path; i is the viscosity of the vapor; r is the two-dimensional
radius-vector in a plane perpendicular to the z axis in units of A; and ¢ is the dimensionless molecular velocity.

The term 8h/9z is ordinarily omitted in solving problems of the flow of a gas in a cylindrical channel
[1, 4, 5]. Inthe present case this approximation implies that the essential dependence of the distributed func-
tion on z is expressed in terms of p, T, and qp. Integrating Eq. (4) along the characteristics, we obtain
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Multiplying () by 1/ /2 p 2kT/m)Y/? cyexp(—c?) and integrating with respect to ¢, we obtain an inte-
gral equation for the mass flux density along the z axis:
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where T, (x) :§ t"exp(—tz—%) dt (see [6]).
0

Equation (6) is solved by the Bubnov-Galerkin method, using for q, the approximation
g, =A@ r* + B(2).

It is shown in [5] that when this approximation is used in the integral equation which deseribes Poiseuille
flow and differs from (6) only on the right-hand side, the result is in good agreement with the numerical solu-
tion of this equation given in [4]. The two solutions do not differ by more than 1% for Knudsen number from
0.1 to », Performing the calculation, we obtain the following expression for the mass flux along the channel

axis:
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where P is the pressure of the saturated vapor at temperature T(z). The coefficient Q; and @, correspond to
those in [7]. In the description of nonisothermal Poiseuille flow in [7], Q; represents the dimensionless flux
resulting from the pressure gradient and Q, the flux resulting from the temperature gradient,

For B=1, Eq, (7) takes the form
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Equation (8) determines mass transfer over the whole range of Knudsen numbers and has the same form as
the expression describing nonisothermal Poiseuille flow in a eylindrical channel, We note, however, that in
this case Eq. (8) contains the saturated vapor pressure gradient determined by the given temperature distribu
tion of the channel walls,
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In the limiting case of large Knudsen numbers (8) becomes

d
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At the other extreme, when Kn< 1 we have
G —=— R, 4P (10)
8u dz

For 8#1, Eq. (7) involves the flux at the channel wall, Since this flux is related to the axial flux by the
equation of continuity .
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we obtain a second-order differential equation for G:
&6 o?G = — ?Gy, (12)
dz?

821



where o?= (2/vVT) - [8/(1=8)]+ (1/Qy) * (1/R?). The quantities Q and o are functions of the Knudsen number; i.e.,
they generally depend on z, For large and intermediate Knudsen numbers, however, this dependence is very
weak [8], For Kn< 1, @, =1/4 Kn~l, Even in this case, however, the dependence of Q; on z can be neglected
for small temperature and pressure drops along the channel, and the solution of Eq. (12) can be written in

the form

G = C,exp(a2) + Cyexp (— az) +
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Determining C; and C, from the condition that the flux must be bounded as z —+%, we obtain
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Thus, the mass flux for an arbitrary value of the condensation coefficient can be expressed in terms of
the mass flux for g=1.

Integrating by parts successively, we can write (14) in the form

Y aug,
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The first term of series (15) represents the mass flux for 8=1 and does not depend on the condensation co-
efficient, Suppose L>R is a characteristic length over which there is an appreciable change in the tempera-

ture and its derivatives. Then when the condition
(RILPQ, < BI(1—B) (16)

is satisfied the remaining terms of the series do not contribute appreciably to the flux; i.e,, mass transfer is
independent of the condensation coefficient. For large and intermediate Knudsen numbers Q, is close to unity
and condition (16) can be satisfied over a broad range of Svalues. For Kn< 1, Eq. (16) is considerably more

stringent: B
R \? P
() <o 5

It is known that the processes of evaporation and condensation can be considered as a special case of a
reversible heterogeneous first-order reaction, Condition (16) implies that the reaction proceeds in the diffu-
sion regime when the effective reaction rate is determined by the yield and removal of the reacting materials
and not by the reaction rate at the wall, This also explains why mass transfer is independent of the condensa-
tion coefficient when (16) is satisfied.

NOTATION

f, distribution function; v, molecular velocity; v; , component of molecular velocity in a plane perpendicu~
lar to the channel axis; n, unit vector normal to the channel surface; ¢, angle between n and v ; m, molecular
weight; k, Boltzmann constant; py, vapor density in channel; Ty, vapor temperature in channel in °K; A, mean
free path of vapor molecules; ¢, radius of channel in units of A\; b=~r cos ¢ +v 62— 1?sin? ¢, characteristic
length from point r to channel wall; Kn, Knudsen number, Indices: R, value of quantity at channel wall.
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